A SIMPLE SYNTHESIS OF 1-(1,3-BUTADIENYL) CARBONATES AND CARBAMATES

Paul F. De Cusati and R. A. Olofson*

Department of Chemistry, The Pennsylvania State University University Park, PA 16802, USA

Summary: Crotonaldehyde and its congeners are conveniently and often stereospecifically converted to *trans*-1-(1,3-butadienyl) carbonates and carbamates by treatment first with potassium *tert*-butoxide and then with a chloroformate or carbamyl chloride.

In 1975, Oppolzer¹ reported the synthesis of *trans*-*N*-(1,3-butadienyl) carbamates 1 by treatment of imines from crotonaldehyde with either MeS(O)CH₂⁻Na⁺ in DMSO or (Me₃Si)₂N⁻Na⁺ in toluene at *ca.* –50 °C followed by acylation with chloroformates. Both Oppolzer² and Overman³ have shown the utility of 1 as a Diels-Alder diene in the regio- and stereospecific total syntheses of several alkaloids and Oppolzer¹ has patented 1 as a monomer in the production of fibers and films. Despite the value of 1 in synthetic and polymer chemistry, the analogous *O*-butadienyl carbamates 2 and carbonates 3 of α , β -unsaturated aldehydes were unknown prior to this work.⁴ This also is surprising since butadienyl acetate 4 is a useful synthon⁵ and an important commercial monomer. The acetate 4 is as reactive as butadiene and undergoes predominantly 1,4-polymerization to give high-strength, cross-linkable, oil-resistant rubbers which bind tightly to glass, paper, and wood.⁶

The absence of **2** and **3** from the literature derives in part because the required analogues of the acetic acid or acetic anhydride used in the main routes to 4^7 are either unstable or react differently. Also, most chemistry of crotonaldehyde is dominated by its great potency both as an aldol and Michael acceptor.⁸ (However, the enolate of the more substituted 2-methyl-2-pentenal has been generated with KH in THF and alkylated in the α -position.⁹)

With this background, we are pleased to report that addition of crotonaldehyde to commercial KOtBu in THF at -78 °C affords the enolate which when treated with chloroformates is converted exclusively to the *E*-butadienyl carbonates **3**. Some examples are given in Rxns. **A-D** of the Table. The yield is not sensitive to chloroformate addition time but enolate concentration is important; *e. g.*,

reduction of enolate concentration in **A** from 0.53 to 0.36 *M* lowered the yield of **5E** from 83% to 71%. At enolate concentrations above 0.5 *M*, the mixture after chloroformate addition is difficult to stir. If the enolate is generated at higher temperature, some *Z*-isomer¹⁰ is found: *e.g.*, with **6** at -50 °C, the *E/Z* ratio was 7. However, the enolate once formed can be warmed to -20 °C without loss of stereo-specificity. At this temperature, however, the product in **A** (78% corr. yield) was contaminated by 4% EtOCO₂tBu. Acylation at 0 °C afforded **5** with *E/Z* = 19 (57% yield).

Even in retrospect, it is surprising that much **3** was obtained. For the reaction to work, the enolate must be formed very rapidly and crotonaldehyde (**18E**) must be a much stronger acid than HOtBu.¹¹ Otherwise aldol and Michael condensations would prevail. Although a potassium enolate should react with CICO₂R at oxygen, another reaction-defeating complication remains. The enolate must compete with excess KOtBu and with the HOtBu by-product for CICO₂R. Reaction of CICO₂R with HOtBu gives HCI which would destroy the enolate. Finally any t-butyl carbonate formed in this competition should (and does) codistill with **3**, a product of similar polarity and molecular weight.

With tiglic aldehyde (MeCH=CMeCHO, **19E**) and 2-chlorocrotonaldehyde (**20Z**, same stereo., priority rule change), carbonate formation remained stereospecific in the same sense (Me *trans* to CHO) and the isoprenyl **9E**¹⁰ and chloroprenyl carbonates **10Z**,**11Z** were obtained. However with senecioaldehyde (**21**), stereochemical discrimination was lost (**13E/Z** = 1.1 in Rxn. I) Polymerization during distillation caused the low yield of **10Z** (avoided by chromatographic isolation for **11Z**).

The reaction stereochemistry can be explained. Both **18E** and **19E** exist >90% in planar s-*trans* W-conformations at 25 °C.¹² For **18E**, the calcd. ΔE for the s-*trans* to s-*cis* rotation is 1.8 kcal/mol and ΔH^{\dagger} is 7.4 kcal/mol (3.2 and 6.8 for **19**).¹² Thus, deprotonation of **18E** or **19E** at low temperature should provide the <u>stereochemically more rigid enolates</u> in the same W-conformation. Acylation of such enolates would yield solely *E*-carbonates (*Z* for **20Z**). In **21**, calculations indicate that the s*trans* conformation is distorted from planarity, ΔE is only 1.4 kcal/mol, and ΔH^{\dagger} is 2 kcal/mol less *vs* **18E**.¹² Thus, **21** should react less stereoselectively as is found. By this reasoning, the results would be reversed with mesityl oxide (**22**)¹³. There the s-*cis* isomer is 1.7 kcal/mol more stable than s-*trans* and ΔH^{\dagger} is *ca*. 4 kcal/mol¹² so the major product should have the *Z*-stereochemistry. Indeed, in **L** and **M**, only **16Z** and **17Z** are found. Any special stability of a U-enolate¹⁴ from alternative deprotonation of the *cis*-methyl in **21** and **22** would increase the amount of *Z*-products in accord with the data.

The new methodology also has been extended to the preparation of the previously unknown *O*butadienyl carbamates **2**. When CIC(=O)NEt₂ was added to crotonaldehyde enolate (**18E** + KOtBu in THF) at -78 °C, carbamate **12E** (*no Z*) was obtained in 75% yield. With **21** as expected, this stereochemical discrimination was lost (E/Z = 1.1 for **14** and **15**) In the carbamate forming reactions, the products were contaminated by 10-12% of *O*-*t*-butyl *N*,*N*-dialkylcarbamate (inert diluent in later chemistry). Thus, carbamyl chlorides are less selective than chloroformates. They also are much less reactive (process occurs *only* after removal of cold bath). To find one reagent both less reactive and less selective than another is rare. Here, the dichotomy is resolved by including the precedented ion pair [R₂N⁺=C=O Ci⁻] as a competive acylating agent.

A study of some chemistry of these new products is presented in the following paper.

Acknowledgment. We are grateful to Drs. J.-P. Senet and G. P. Wooden for useful discussions and contributions. We also thank SNPE of France for the funds used to perform this research.

TABLE. ALKYL DIENYL CARBONATES AND CARBAMATES FROM REACTION OF:

Қ́н+ сі–Қ́ CH3-Rxn. <u>Y =</u> <u>Z =</u> Product Yield Bp at pressure IR(C=O)^a 1760 cm⁻¹ н -O-Ethyl 5E 83% 42 °C at 3 mm А 45-47 °C at 0.4 mm В н -O-Neopentyl 6E 81% 1765 С н -O-Allyl 7E 58% 55 °C at 0.8 mm 1750 -O-CH₂CCl₃ 8E 99 °C at 0.7 mm 1770 D н 68% 78%^b Ε Me -O-Ethyl 9E 48-51 °C at 0.6 mm 1760 F -O-Ethyl 10Z 58-61 °C at 1.5 mm CI 32% 1780 G CI 11Z -O-Neopentyl 55% Flash chrom (hexane) 1765 н Н -N-(Ethyl)₂ 12E 75%^C 74-84 °C at 1 mm 1715

I. Crotonaldehydes with KOtBu and Choroformates or Carbamoyl Chlorides.

II. Senecioaldehyde with KOtBu and Chloroformates or Carbamoyl Chlorides.

Me O Me O ↓ H CH ₃ C=CHCHO + CI-C-Z → H ₂ C=C-CH=CHO-C-Z						
<u>Rxn.</u>	<u>Z =</u>	Product	E:Z ratio	<u>Yield</u>	Bp at pressure	<u> R(C=O)</u> a
I	-O-Ethyl	13E,Z	1.1/1	74%	46-57 °C at 4 mm	1760 cm ⁻¹
J	-N-(Methyl) ₂	14E,Z	1.1/1	62% ^d	62-70 °C at 0.8 mm	1720
к	-N-(Ethyl) ₂	15E,Z	1.1/1	62% ^ø	63-73 °C at 0.4 mm	1720

III. Mesityl Oxide with KOtBu and Chloroformates.

^aSpectra taken in CCl₄. ^bYield corr. for presence of 3% (EtO)₂C=O. ^cYield corr. for presence of 10% Et₂NCO₂tBu. ^dYield corr. for presence of 12% Me₂NCO₂tBu. ^dYield corr. for presence of 12% Et₂NCO₂tBu.

E-1-(1,3-Butadienyl) Ethyl Carbonate (5E). Crotonaldehyde (dried, distilled) (8.70 g, 0.12 mol) in dried THF (20 mL) was dripped (40 min) into a stirred, -78 °C solution of KOtBu (Aldrich) (15.7 g, 0.14 mol) in 200 mL THF under N₂. Once the yellow enolate was formed, CICO₂Et (16.2 g, 0.15 mol) in THF (15 ml) was dripped into the mixture, causing it to become red and viscous. Removal of the cold bath after adding half the CICO₂Et facilitated stirring. When the mixture reached room temperature, it was quenched with ice and extracted with ether (3 x 50 mL). The extracts were washed with brine (50 mL), dried (Na₂SO₄), and distilled to obtain pure **5E** as a clear liquid; bp 42 °C at 3 mm, 14.6 g (83% yield); IR (CCI₄) 1760 (s), 1670 (m), 1250 (s) cm⁻¹ (s); ¹H NMR (CDCI₃) δ 7.20 (d, 1 H, *J* = 12 Hz), 6.6-5.8 (m, 2 H), 5.4-4.9 (m, 2 H), 4.25 (q, 2 H, *J* = 7 Hz), 1.25 (3 H, *J* = 7 Hz; ¹³C NMR (CDCI₃) 152.0 (s, C=O), 140.0 (d, C³), 131.0 (d, C¹), 116.4 (t, C⁴), 115.3 (d, C²), 64.1 (t, CH₂) 13.5 (q, CH₃) ppm; high res. MS 142.0635 (M⁺ at 142.0630, 30%), 70 (100%), 60 (63%).

References and Notes

Oppolzer, W.; Frostl, W. *Helv. Chim. Acta* **1975**, *58*, 587; Oppolzer, W. *U. S. Patent 4*,065,946 **1977** [*Chem. Abs.* **1977**, *88*,190064m]. A Curtius rearrangement route also has been used to make **1** by: Overman, L. E.; Taylor, G. F.; Petty, C. B.; Jessup, P. J. *J. Org. Chem.* **1978**, *43*, 2164.

(2) Oppolzer, W.; Frostl, W.; Helv. Chim. Acta 1975, 58, 590; Oppolzer, W.; Frostl, W. Weber, H. Ibid. 593.

(3) Overman, L. E.; Taylor, G. F.; Houk, K. N.; Domelsmith, L. N. *J. Am. Chem. Soc.* **1978**, *100*, 3182; Overman, L. E.; Jessup, P. J. *Ibid.* 5179.

(4) The analogous α,β -unsaturated ketone derivatives, especially cyclohexenones, are known.

(5) See syntheses of β-lycorane (Hill, R. K.; Joule, J. A.; Loeffler, L. J. *J. Am. Chem. Soc.* 1962, *84*, 4951), oryzoxymycin (Shin, C.; Yamaura, M.; Inui, E.; Ishida, Y.; Yoshimura, J. *Bull. Chem. Soc. Jpn.* 1978, *51*, 2618), suragatoxin (Okada, K.; Sakuma, H.; Kondo, M.; Inoue, S. *Chem. Lett.* 1979, 213), and thienamycin (Johnston, D. B. R.; Schmitt, S. M.; Bouffard, F. A.; Christensen, B. G. *J. Am. Chem. Soc.* 1978, *100*, 313).

(6) Gressier, J.-C.; Pinazzi, C. P.; Levesque, G. Makromol. Chem. 1975, 176, 341; Levesque, G.; Gressier, J.-C. C. R. Acad. Sci., Ser. C 1973, 277, 555; Japan Synthetic Rubber Co. Jpn. Kokai JP
82 209,909 1982 [Chem. Abs. 1983, 99, 23841h]; copolymers also adhere to metals.

(7) Yoshida, Y.; Shinohara, H.; Hanari, I *Jpn. Kokai 78 90212* **1978** [*Chem. Abs.* **1978**, *89*, 196985e]; Wichterle, O.; Hudlicky, M. *Coll. Czech. Chem. Comm.* **1947**, *12*, 564; Hagemeyer, H. J.; Hull, D. C. *Ind. Eng. Chem.* **1949**, *41*, 2920.

(8) Even *E,Z*-(1-TMS-*O*)-butadiene is obtained in only 50% yield from crotonaldehyde, Et₃N, and TMS-CI: Fleming, I.; Goldhill, J.; Paterson, I. *Tetrahedron Lett.* **1979**, 3205, 3209.

(9) Groenewegen, P.; Kallenberg, H.; van der Gen, A. Tetrahedron Lett. 1978, 491.

(10) Easily differentiated by J_{vic} in the ¹H NMR spectra: $J_{trans} = 11-13$ Hz and $J_{cis} = 6-7$ Hz. Also, C¹H is normally at 7.1-7.2 δ in the *trans* -isomer and at 6.7-6.9 δ in the *cis*-product. This latter result was used to assign stereochemistry when C¹ or C² was substituted. Such assignments were confirmed by NOE experiments in **9** and **16**. Several comparison isomer pairs were available.

(11) For data suggesting that even simple aldehydes may be more acidic than previously thought see:

Olofson, R. A.; Dang. V. A.; Morrison, D. S.; De Cusati, P. F. J. Org. Chem. 1990, 55, in press.

(12) Liljefors, T.; Allinger, N. L. J. Am. Chem. Soc. 1976, 98, 2745; for exp. ΔH^T's see refs. therein.

(13) Reaction with KOtBu and then ClCO₂R failed with other α , β unsaturated ketones; e.g., cyclohexenone.

(14) Due to chelation or orbital symmetries: Hoffman, R.; Olofson, R. A. J. Am. Chem. Soc. 1966, 88, 943.